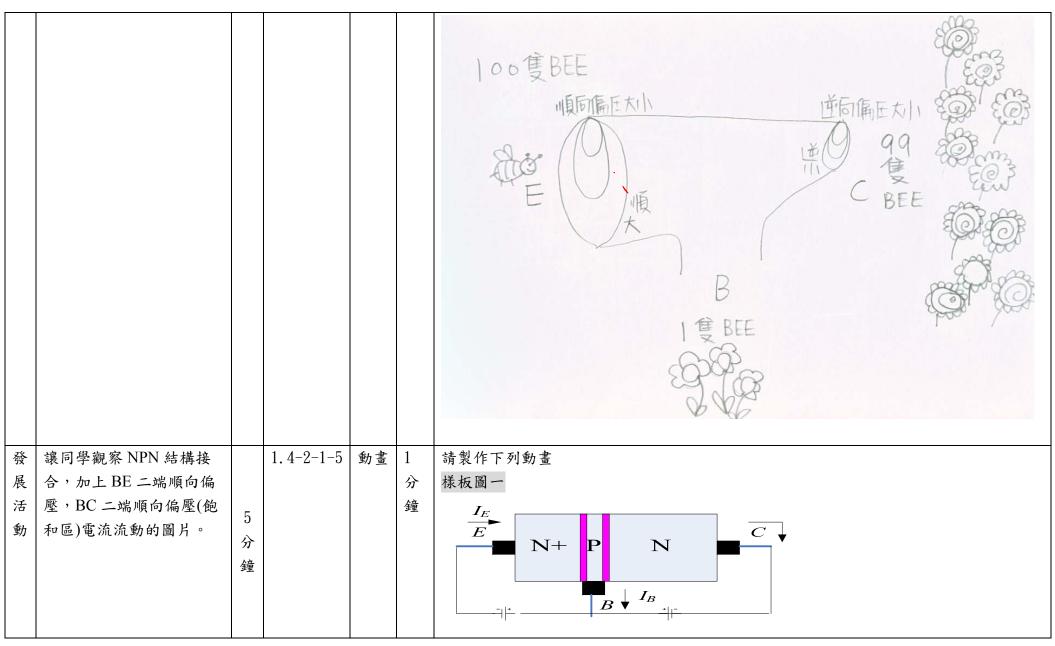
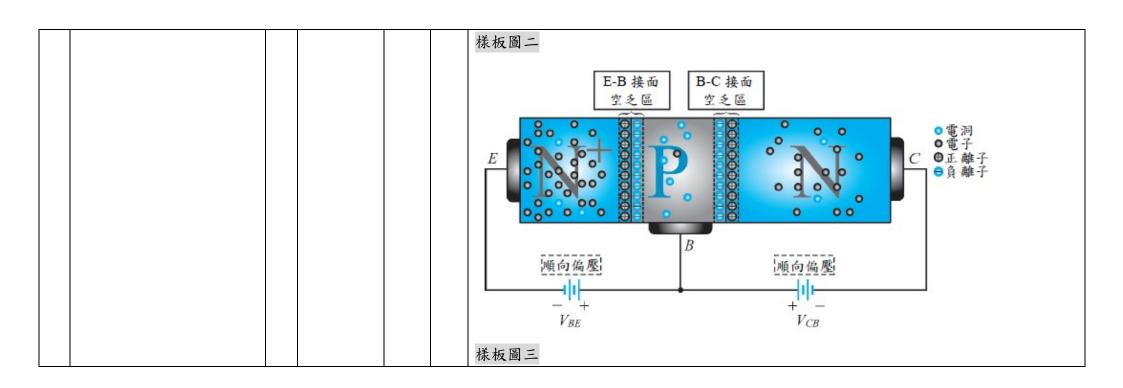
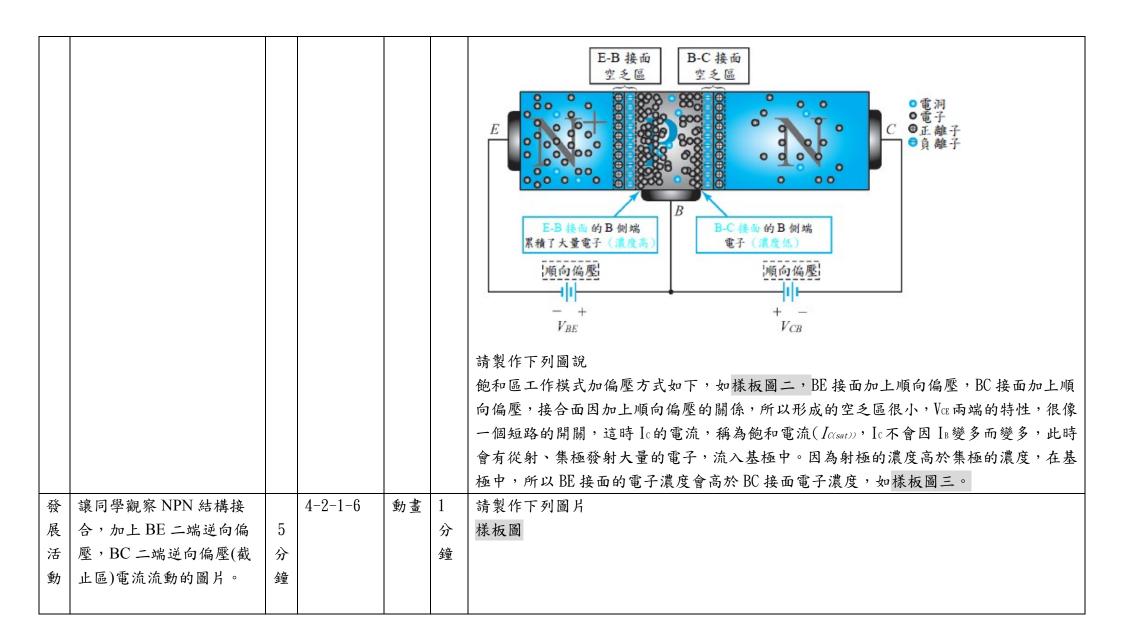
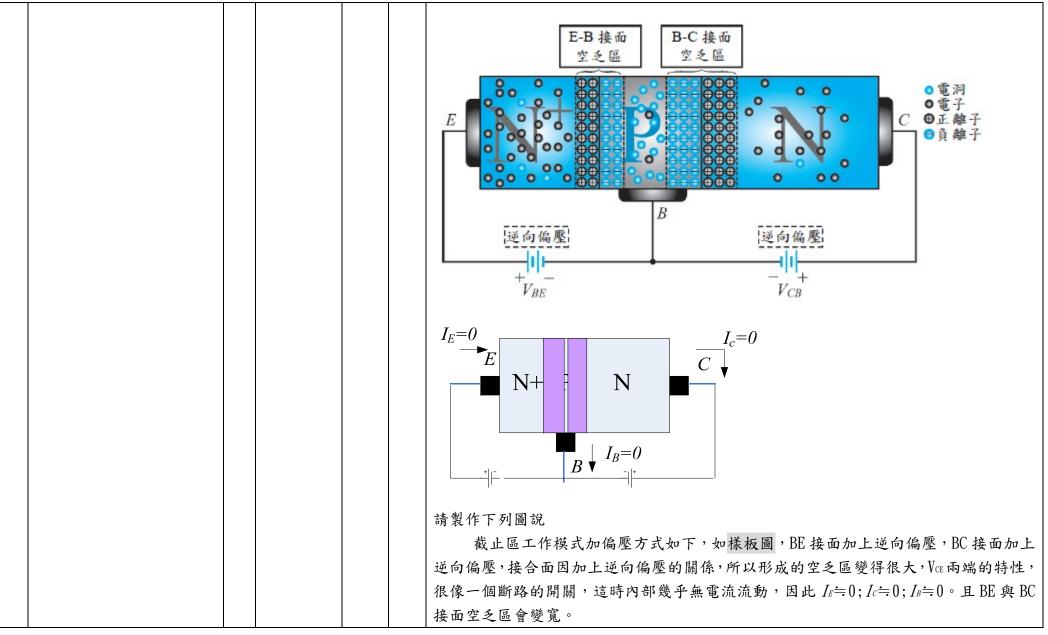

表二、高職數位教材發展與推廣計畫—電子學科單元教案設計表


單元編號		4-2-1	單元	電晶體之工化	乍原理						
	半儿細號		名稱								
對應之課網 電晶體之工作原理							預計本單元總教學時間	42 分鐘(約 30-50 分鐘)			
	單元目標 了解電晶體四種工作模式										
		1 · 學習目標									
		(1)學生能認識電晶體的主動模式									
		(2)學生能認識電晶體的飽和模式									
教	具體目標	(3)學	生能認識	(電晶體的截)	上模式						
學	(例如:能說	(4)學	生能認識	電晶體的逆向	句主動	莫式					
目	出、能寫出、	2・課程区	內容								
標	能列舉、能運	(1)透	過放大區]片的例子,	引發學	生學習	引的動機				
	用)	(2)學	生能透過	動畫,認識 智	電晶體的	的主動	为模式加偏壓的情形,即形成電流的狀	態			
		(3)學	生能透過	13 圖片認識電台		飽和樽	其式				
		(4)學	生能透過	13 圖片認識電台		截止核	其式				
		(5)學	生能透過	10 周片認識電	 温體的	逆向主	動模式				
			教	元	件						
	教學活	5動	學			時		元件內容說明			
	42 T A	1 3/1	時	編號	類型	間	(請:	填入8-9個元件)			
			間			17					
準 (引起動機) 1.4-2-1-1 動畫 3 請製作下列圖片							請製作下列圖片				
備	f 複習上一單元例子,分享 3 分 分					分	第一個頁面為圖片,第二個頁片為圖說				
活	生活經驗,上課時老師經 分 鐘					鐘		符,中間圖為一個 NPN 電晶體的符號,左邊為一			
動	動 由麥克風透過放大,讓同 鐘						個喇叭,旁邊有一個大音符,於電晶體符號的左邊有(小的)小信號三個字體,於電晶體				
	學清楚的聽	到聲音,但	旦是				符號的右邊有(大的)大信號三個字體	0			


	電晶體該如何接偏壓才會放大,透過此圖說讓同學明白電晶體放大的過程。					樣板圖 (清製作下面圖說(旁白) 原本微弱的小音符藉由麥克風,經由電晶體放大,再到大信號放大,透過喇叭將聲音輸出,就是放大後的大音符
發	讓同學觀察 NPN 結構接		4-2-1-2	動畫	2	請製作下列動畫
展					分	主動模式偏壓方式採,BE接面加順向偏壓,BC接面加逆向偏壓,如樣版圖一所示。由
活		15			鐘	於BE接面加順偏,所以會有來自射極大量的電子,注入基極中,如樣版圖二所示,但
動		分				因為基極中的電洞濃度遠不及射極所注入的電子濃度,且基極的寬度甚薄,所以來自射
	即解釋 $I = I + I c$,也可以 定義典型值 $\alpha \cdot \beta \gamma$	鐘				極的大量電子與基極中的電洞中和後,剩餘的多數載子電子,會穿過基極,因外加電場 的關係,正電壓會吸引電子越過空乏區擴散至集極,而形成電流。\
	人 找 //					的關係,正电壓曾吸引电子巡過至之區擴放至呆極, III 形成电流。\ 樣版圖一




 , 		
4-2-1-3	2	起始畫面為 NPN 接合的電晶體,尚未加入偏壓。
	分	10 秒後於 BE 二端接上一個電池,為順向偏壓,此時 BE 接合面產生較小的空乏區
	鐘	(以粉紅色表示)。
		20 秒時於 BC 二端接上一個電池,為逆向偏壓,此時 BC 接合面產生較大的空乏區
		(以紫色表示)。
		30 秒後動畫結束
		樣板圖
		Z BC接合面空 ジ區 上
		大 BE接合面空 大 Z
		ш
		請製作下列動畫
4-2-1-4	3	第一個畫面配置,圖的左邊有 100 隻蜜蜂聚集在一起,翅膀振動很有活力的飛行,
	分	於圖的下方有三朵花,圖的右邊有一片花海,100隻蜜蜂同時飛行,只有一隻蜜蜂前往
	鐘	三朵花的地方採蜜(可以先到,因為三朵花位置在中間),剩餘的99隻蜜蜂,很快樂地
		往花海的方向前進採蜜。蜜蜂飛行至花朵上採蜜,動畫時間約為30秒。
		$31-40$ 秒時在 100 隻蜜蜂上浮上『 $I_{ar{\epsilon}}$ 電流』的字樣。
		$41-50$ 秒時在 1 隻蜜蜂上浮上『 I_{eta} 電流』的字樣。
		$51-60$ 秒時在 99 隻蜜蜂上浮上『 $I_{\mathcal{C}}$ 電流』的字樣。
		61-65 秒時清除以上畫面,版面為淡綠色

66-80 秒時出現圖 Right Recombination Value Ves
請製作 electrons 色帶為電流流動的狀態 於圖的下方出現字體【NPN 接合,BE 二端加上順向偏壓,BC 二端加上逆向偏壓, 形成電流之狀態】 81-85 秒時清除以上畫面,版面為淡綠色 *86-100 秒動畫不清除,保留至加總結束 86-90 秒出現【 I_E 電流為 100 隻蜜蜂】 90-92 秒時出現【 $=$ 】 93-95 秒時出現【 I_B 電流為 1 隻】 96-98 秒時出現【 $+$ 】 99-100 秒時出現【 I_C 電流為 99 隻蜜蜂】 $101-110$ 秒時出現 $\alpha = I_C/I_E = 99/100 = 0.99$ $111-120$ 秒時出現 $\beta = I_C/I_B = 99/1 = 99$ $121-130$ 秒時出現 $\gamma = I_E/I_B = 100/1 = 100$ 樣板圖

	T	1	T : : : =		Ι.						
發	讓同學觀察 NPN 結構接		4-2-1-7	簡報	1	請製作下列館	自報				
展	合,加上BE 二端順向偏				分	Page 1					
活	壓,BC 二端逆向偏壓(逆				鐘	反向主	動區工作模式	弋加偏壓方式	如下,BE接面	加上逆向偏壓,BC接面加上順向偏	
動	向主動區)電流之圖片。		壓,如採此偏壓方式,很像將射極與集極對調使用,由集極發射電子,而射								
						集電子,原本定義射極濃度高於集極濃度,故集極發射的多數載子會小於射極發					
						射的多	數載子,所以	人增益會下降	。射極與集極	對調使用,也會使原本 BE、BC 加逆	
						向偏壓	的耐壓降低,	故此種加偏	壓的方式不採	用。(再放上 page 2 的表格,後面	
		5				的實例	表示圖 ok)。				
		分				Page 2					
		鐘				工作模式	B-E 接面	B-C 接面	功能		
						順向主 動	順向偏壓	逆向偏壓	信號放大		
						飽和	順向偏壓	順向偏壓	開關電路		
									on		
						截止	逆向偏壓	逆向偏壓	開關電路		
									off		
						反向主動	逆向偏壓	順向偏壓	不建議使		
									用		
綜	以互動式遊戲方式,讓同		4-2-1-8	動畫	2	請製作下列至	L 動式動畫				
合	學能把電晶體四種工作模				分	繪製一份	分類似大富翁	的遊戲紙,上	上面有一個 BE	E牌,一個BC牌,左邊方框為主動	
活	式偏壓方式記憶起來。				鐘	區,上邊方框	[為飽和區,]	右邊方框為截	止區,下邊方	· 「框為逆向主動區,滑鼠移動時為一	
動		5				隻手,可翻取 BE 牌與 BC 牌。					
		分				BE 牌與 BC 牌為亂數選擇,BE 牌正面為順向與逆向,BC 正面為順向與逆向					
		鐘				a 當 BE 牌與 BC 牌同時都為順向時,上面方框飽和區呈黃白閃爍,至三秒後結束,					
						返回主畫面。					
						b 當 BE	E牌與BC牌	同時都為逆向	1時,右邊方框	截止區呈黃白閃爍,至三秒後結束,	
						返回	主畫面。				

				 c當BE 牌為順向、BC 牌為逆向時,左邊方框主動區呈黃白閃爍,至三秒後結束,返回主畫面。 d當BE 牌為逆向、BC 牌為順向時,下面方框逆向主動區呈黃白閃爍,至三秒後結束,返回主畫面。 樣板圖
				图 和 图 3
				4- m
				主的
				The son POIS
				X ROBERS
				i BC-
				举向主动区 60
				TIO, THILE
綜	以選擇題的方式,讓同學		文字	()1. 電晶體工作於何種模式下,主要是由哪二個接合面電壓來決定?(A) Vce; Vbb(B)
合	選擇出適當的選項以了解	4		V _{BC} ; V _{CE} (C) V _{CE} ; V _{CB} (D)無法判斷 (A)
活	電晶體的四種模式。	分		()2. 下列何者不屬於電晶體的工作模式?
動		鐘		(A)主動模式(B)飽和模式(C)定電流模式(D)截止模式 (C)
				()3. 電晶體放大電路中,通常用於下列模式?

				(A) 主動模式(B) 飽和模式(C) 定電流模式(D) 截止模式 (A) (A) NPN 電晶體於飽和模式中,各腳之電壓何者正確?(A) No		
合計:	42	合	15	8個元件		
	分	計:	分			
	鐘		鐘			
可供設計參考資源列表(請至少填入 2-3 項)						
參考資源(線上資源或參考)				簡述		
書籍)						
電子學「引導式筆記林瑜惠」						
陳以熙著						

旗立資訊多媒體	
微電子電路(上)	
文字復興出版社	
http://3.bp.blogspot.com	

說明:

- 1.依欲開發之單元撰寫單元教案設計表,內含教學流程與重點、教學時間、教學元件相關內容等。
- 2.「教學元件」為有教學目的的物件,例:動畫、影片、圖說、簡報等,單一教學元件建議容量不要超過 30M。
- 3.因本表關係經費成本估算,故請以每單元 15 分鐘元件操作或播放時間(直接換算時間成本)設計每一單元,建議平均每單元設計 約 8-9 個元件。

4.名稱定義:

名 稱	說 明	備註
準備活動	本活動係指課間準備,主要為引起動機。例如:複習、播放影片、遊戲等。	建議安排 1-2 個元件
發展活動	有時用介紹、提示,有時用說明、解釋,有時用討論、報告,有時用示範、練習,有時用觀察、實驗、製作,有時參觀、檢討,有時用扮演、發表,方式繁多。	建議安排 5-7 個元件
綜合活動	教學活動中的最後階段,例如:整理、評量、指定作業。	建議安排 1-2 個元件