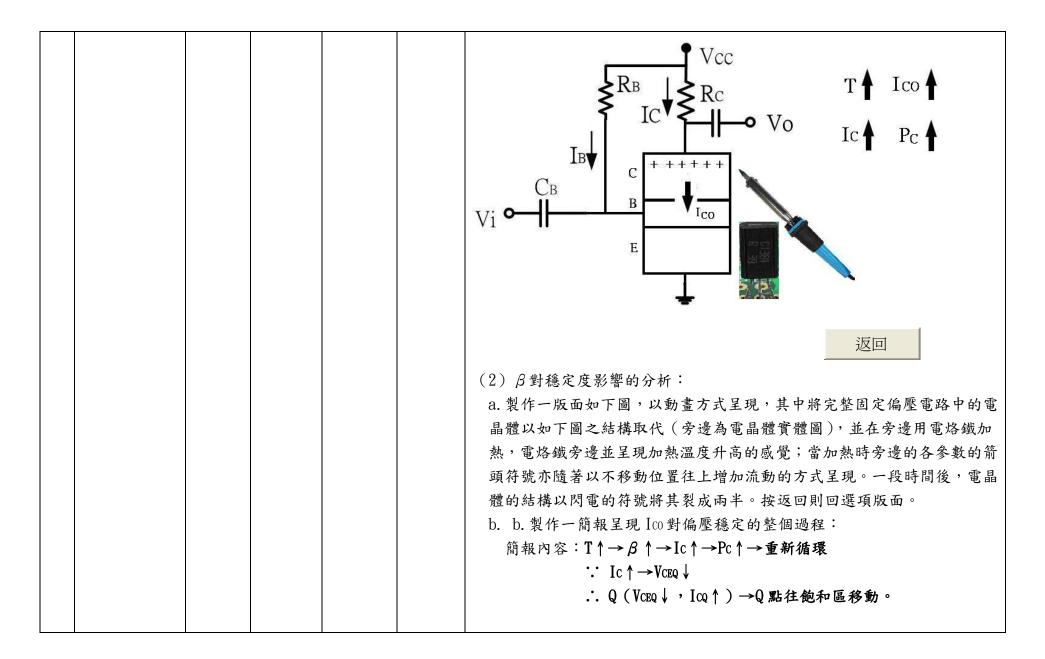
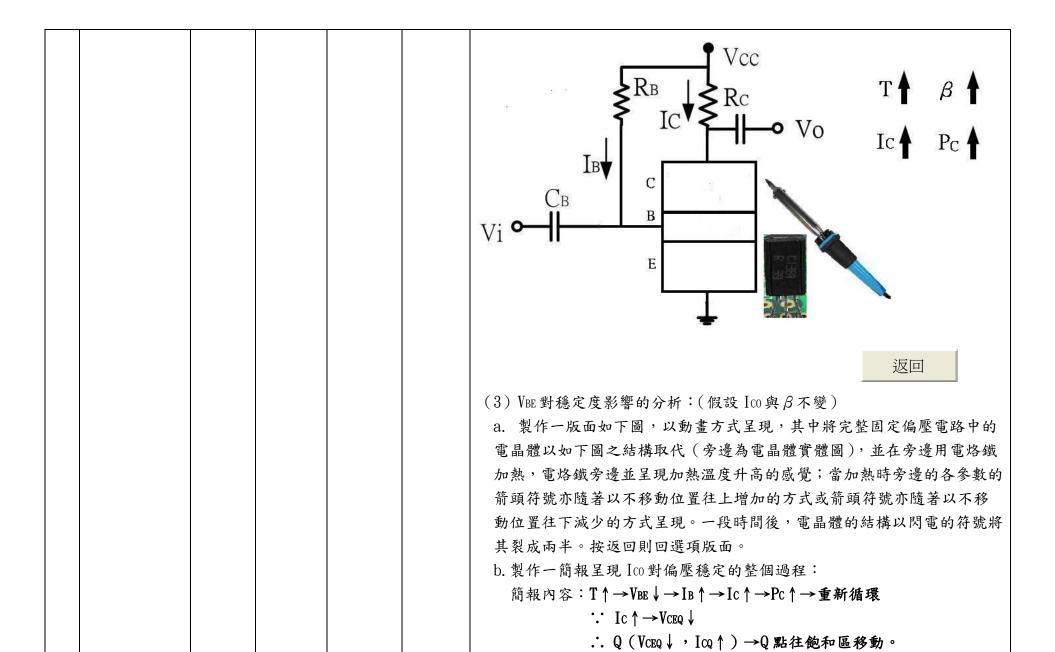
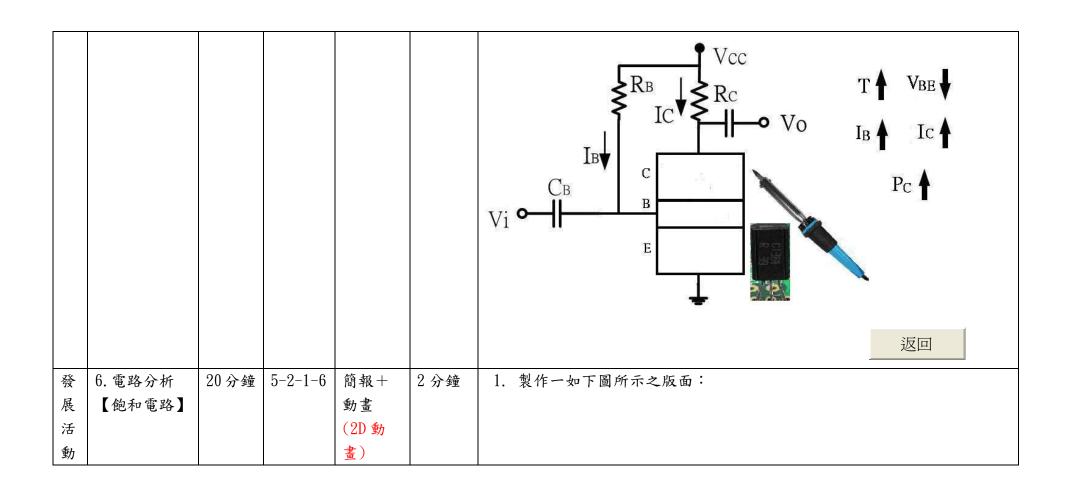
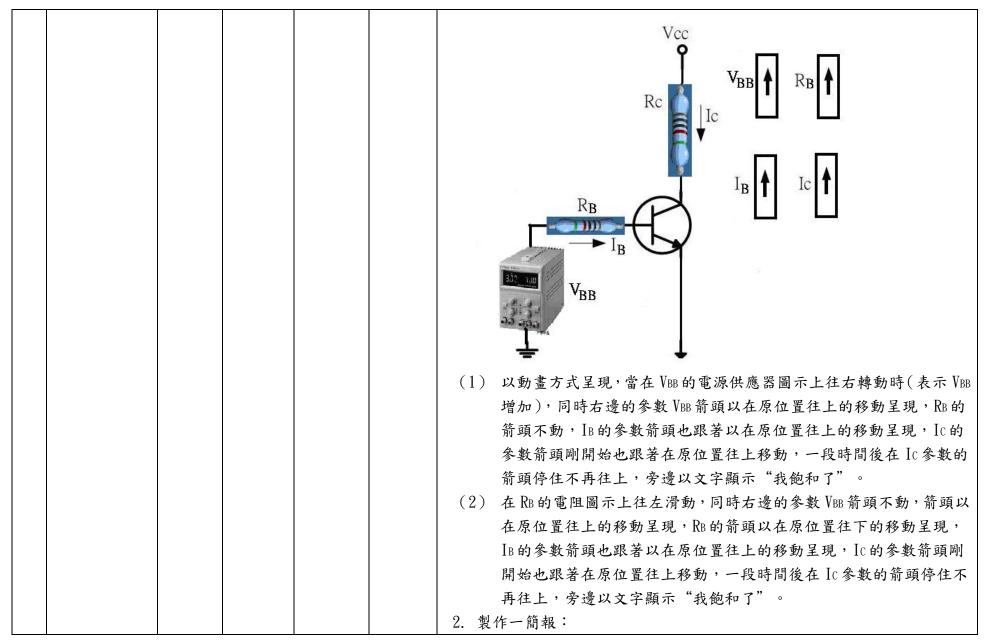

表二、高職數位教材發展與推廣計畫—電子學科單元教案設計表


	單元編號	5-2-1	單元名稱	固定偏	壓電路							
	對應之課網	5-2 固定	5-2 固定偏壓電路 預計本單元總教學時間 100 分鐘									
教學	單元內容簡 介											
子目	具體目標	1. 能瞭解固定偏壓電路輸入迴路的直流分析與計算。										
標	(例如:能說	2. 能瞭解固定偏壓電路輸出迴路的直流分析與計算										
	出、能寫出、能		3. 能分析溫度變化對固定偏壓電路穩定度的影響。									
	列舉、能運用)	4. 能瞭角	军電晶體飽		與計算。							
		教學		元件		元件內容說明						
	教學活動	時間	編號	類型	時間	(請填入8-9個元件)						
發	1 電路分析:	10 分鐘	5-2-1-1	動畫	2分鐘	輸入迴路的形成:製作以下選項的版面						
展活	【輸入迴路直 流分析】		(輸入 迴路的			輸入電流移動路徑 完成輸入迴路						
動			形成)			1. 輸入電流移動路徑						
						製作如下圖之版面						
						(1)以動畫的方式呈現:當開關按下時,將輸入電流 IB以 → 代表由 Vcc, 然後著完整電路經電阻 RB→電晶體 B—E→接地回到 Vcc 移動一圈然後重 複循環(如下圖所示),當開關在按一次時就停止 → 移動。按返回則回 選項版面。						




發	2 電路分析:	10 分鐘	5-2-1-2	簡報	1 分鐘	2. 電流公式推導:
展	【輸入迴路電	-0 /4	(輸入	1-4 11-6	- 70	以簡報的方式呈現 IB 電流公式的推導過程(以逐步出現的方式,由(1)(2)
活	流公式推導】		迴路電			(3) 一個一個出現)
動			流 IB公			(1)根據克希荷夫電壓定律(KVL)由輸入迴路可以寫出輸入方程式:
			式推導)			$I_B \times R_B + V_{BE} - V_{CC} = 0$
						$(2) \rightarrow I_{B} = (V_{CC} - V_{BE}) / R_{B}$
						(3) 由公式可得 Ic=βIB
發	3. 電路分析:	10 分鐘	5-2-1-3	動畫	2分鐘	輸出迴路的形成:製作以下選項的版面
展	【輸出迴路直		(輸出			輸出電流移動路徑 完成輸出迴路
活	流分析】		迴路的			期
動			形成)			1. 輸出電流移動路徑:
						製作如下圖之版面:
						(1)以動畫的方式呈現,當 IB → 不斷輸入時,輸出電流 Ic 以 → 代表不
						斷由 Vcc 出現然後沿著完整電路經電阻 Rc→電晶體 C—E→接地回到 Vcc 移
						動一圈然後重複循環(如下圖所示),當 IB → 停止時,Ic → 也跟著停
						止。按返回則回選項版面。



						$(2) \rightarrow VCE = VCC - IC \times RC$
發展活動	5. 電路分析:【溫度變化對固定偏壓的影響】	20 分鐘	5-2-1-5	簡 動 (2D 畫)	3 分鐘	製作如下面的版面可以選擇不同參數並連結到對應的分析 溫度變化對固定偏壓電路穩定度的影響: ICO β VBE (1) Ico 對穩定度影響的分析: a. 製作一版面如下圖,以動畫方式呈現,其中將完整固定偏壓電路中的電晶體以如下圖之結構取代(旁邊為電晶體實體圖),並在旁邊用電烙鐵加熱,電烙鐵旁邊並呈現加熱溫度升高的感覺;當加熱時結構中的電洞十不斷產生並往 B 極的方向移動,箭頭符號以不移動位置往下流動的方式呈現。同時旁邊的各參數的箭頭符號亦隨著以不移動位置往上增加流動的方式呈現。一段時間後,電晶體的結構以閃電的符號將其裂成兩半。按返回則回選項版面。 b. 製作一簡報呈現 Ico 對偏壓穩定的整個過程: 簡報內容:T↑→Ico↑→Ic↑→Pc↑→重新循環 ∴ Ic↑→VcbQ↓ ∴ Q (VcbQ↓,Icq↑)→Q 點往飽和區移動。

			1			
						內容:
						$I_B = (V_{BB} - V_{BE}) / R_B$
						Ic (sat) = (VCC - VcE(sat)) / Rc
						飽和條件:
						$\beta \times IB \ge IC \text{ (sat)}$
綜	學生回答	5分鐘	5-2-1-7	動畫	2分鐘	製作一版面如下之自動或手動出題形式的考題模式,當學生答對時給予文字
合						顯示"你真厲害"加掌聲的鼓勵,答錯時給予文字顯示"再努力一下"加油
活						語:
動						
						自動出題 手動出題(最多選兩題)
						1. 按自動出題時由 4 個題目中自動選出兩題顯示出來,其餘兩題隱藏,以
						供學生測驗回答。
						2. 按手動出題時,可以由老師由 4 個題目中選擇兩個題目,以供學生測驗
						回答,未選到其餘兩題隱藏。
						題目:
						-
						(1) 溫度上升,電晶體集極電流上升的原因為何? (A) I_{co} (B) V_{BE} (C)
						β (D)以上皆是。 <mark>答案(D)</mark> (2)如下圖電晶體開關電路,使電晶體操作於飽和區的最小基極電流 IB為
						(A)1mA(B)0.5mA(C)0.1mA(D)0.05mA。答案 (B)
						$V_{CC} = +10V$
						$\stackrel{\circ}{\underset{\sim}{\longleftarrow}}$ R_C
						$\sum_{\nu_0}^{\nu_0}$
						P
						$\beta = 100$
						V _I 5V
						0, — =

(3)如下圖所示電路, $R_C = ?(A)5k\Omega(B)2.5k\Omega(C)500\Omega(D)$	250Ω ∘
答案 (C)	
+5V	
$R_B = R_C$	
$V_{VCE} = 2.5 \text{V}$	
$V_{BE(t)} = 0.7V$ $\beta = 50$	
(4) 如下圖所示若 $V_{ ext{CE}(SAT)} = 0V$, $eta = 50$ 求讓電晶體進入飽和區的	I 最小 $I_{B(\min)}$
為多少? (A) 0.1(B) 0.5(C) 1(D) 1.5 mA 。答案 (A))
+5V	
$R_C \stackrel{R_C}{\downarrow}$	
$V_i \circ R_B$	

	1	T	I	1	1	
	上台演練	10 分鐘	5-2-1-8	簡報+	1分鐘	以簡報的方式呈現題目:
綜				動畫		$+V_{CC} = 10V$
合				(2D 動		R_{C}
活				畫)		$R_B > 3k\Omega > I_C$
動						
						$V_{BE(t)}$ =0.7V
						題目:如圖
						2. 以互動方式解答整個求解過程。
						(1)顯示由直流輸入迴路導出直流輸入負載線方程式為
						IBQ × RB + VBE— Vcc = 0 · \therefore IBQ = $\frac{V_{CC} - V_{BE}}{R_B}$
						$ ightarrow$ $I_{BQ} = \frac{10V - 0.7V}{465k\Omega} = 20 \mu$ A($I_{BQ} = \frac{V_{CC} - V_{BE}}{R_B}$,可以由題目手動輸入 V_{CC} ,
						RB, VBE 而自動計算 IBQ 數值的互動方式)
						(2) $I_{\text{CQ}} = \beta \times I_{\text{BQ}} \rightarrow I_{\text{CQ}} = 100 \times 20 \mu\text{A} = 2 \text{ mA} \left(I_{\text{CQ}} = \beta \times I_{\text{BQ}} \text{ 可以由題目手}\right)$
						動修改 β 而 IBQ 隨前面的求解而自行帶入,並計算出 ICQ 之數值)
						(3) VCEQ = Vcc - IcQ × Rc
						$=10V - 2 \text{ mA} \times 3k\Omega$
						=10V - 6V = 4V
						(Vcc, Rc可以由題目手動修改而連動變化, Icq隨前面的求解自動帶入,並計
						算出 VCEQ之數值)
						开山 1000 (双位)
	1	1	l	1	1	1

綜合活動	學習單	5 分鐘	5-2-1-9	簡報	1 分鐘	製作一學習單簡報 內容: 1. 試列出固定偏壓電路之輸入與輸出方程式? 解答:輸入方程式: IB × RB + VBE— Vcc = 0 輸出方程式: Ic × Rc + VCE—VCC=0 2. 試說明影響偏壓穩定的因素有哪些? 解答:影響偏壓穩定的因素有:(1) Ico(2)β(3) VBE 3. 電晶體飽和的條件為何? 解答:β×IB≥Ic(sat)
	合計:	100分鐘		合計:	15 分鐘	9個元件
				可供	設計參考員	資源列表(請至少填入 2-3 項)
	參考:	資源(線上	資源或參	考書籍)		簡述
1.電	子學 [(弘揚圖	書有限公	-司)			5-2 固定偏壓電路
2.電	:子學Ⅰ(台科大	圖書股份	有限公司))		5-2 固定偏壓電路
3.電	子學 I (龍騰文	.化事業股	:份有限公司	月)		5-2 固定偏壓電路
		datafile	/ezgo7_wi	n/PhET/ind	lex-2. htm	
5. h	ttp://hsmateri	al.moe.e	du.tw/			高中學科資訊科技融入教學資源網